rc Rishikanth Chandrasekaran, PhD

rishikanthc@gmail.com rishikanthc.com github.com/rishikanthc Bellevue, WA

Current Position

2024-Present

Applied Researcher | Ebay Inc, Seattle

Fraud Detection: Architected a high-precision collusion classifier using Transformer architectures, optimizing detection for buyer-seller fraud while successfully addressing extreme class imbalance to achieve SoTA precision.

Vector Search & VSA: Designed and implemented a novel Vector Database to encode multi-modal data (embeddings + metadata) into a single high-dimensional vector, enabling atomic SQL-like operations via pure vector search, an open problem in the industry.

Audio Intelligence: Authored a novel Transformer architecture for Blind Source Separation, enabling real-time, simultaneous transcription of multi-speaker overlapping audio.

Education

2017-2024	PhD in Computer Science, University of California, San Diego.
2016-2017	MS in Computer Engineering, Columbia University, New York.
2011-2015	BE in Electrical & Electronics Engineering, Anna University, India.

Research Experience

2017-2024

PhD Candidate | SEELab | University of California, San Diego

Thesis: Enhancing Deep Learning Efficiency: A Hyperdimensional Computing Approach

Designed and implemented hybrid ML architectures using Deep Learning and Vector Symbolic Architectures for efficient learning.

Developed novel transformer architectures for large-scale text classification that are $200 \times smaller$ than traditional approaches.

Authored and published 8 research papers.

Built and optimized distributed training infrastructure on shared GPU cluster, achieving >95% GPU utilization under strict resource constraints. Developed large-scale data processing pipelines for large-scale datasets with comprehensive monitoring and profiling tools.

2016-2017

Graduate Research Assistant | Intelligent and Connected Systems Lab | Columbia University

Built custom acoustic headphones for pedestrian safety using Machine Learning to detect and warn users of approaching vehicles.

Implemented an energy footprinting system to provide occupants personalized, actionable, real-time insights into their energy usage.

Deployed a building sensor network, backend infrastructure, and interactive dashboard for real-time personal energy consumption monitoring.

Authored and published 6 research papers, winning 5 awards.

2013-2015

Undergraduate Research Assistant | Solarillion Foundation, India

Implemented a \$10 Intelligent Prepaid Energy Meter that monitored consumption patterns and provided personalized recommendations for energy savings.

Developed a \$5 Gesture Recognition Glove using custom-designed flex sensors, reducing cost by $100 \times \text{compared}$ to commercial alternatives.

Authored and published 2 research papers, winning 2 awards at MIT.

Personal Projects & Open Source

Scriberr (Open Source): Developed an Open-source completely offline audio transcription appusing state-of-the-art Al models. **1.6k stars on GitHub and over 130k downloads**.

Personal LLM Fine-tuning & Deployment: Fine-tuned **4B parameter models** on personal notes using **LoRA** for writing style adaptation and domain-specific tasks. Experimented with multi-domain LoRA adapters and prompt engineering strategies. Deployed local inference server on homelab infrastructure for experimentation.

RAG & Knowledge Retrieval: Built retrieval-augmented generation pipeline for personal knowledge base (markdown notes). Implemented **vector database with multiple embedding models**, experimented with chunking strategies and retrieval. Used for semantic search and custom MCP for LLM-based information extraction.

Homelab & Infrastructure: Built and maintain a 12U server rack hosting a Kubernetes cluster with 30+ services including personal cloud storage, media servers, Ollama, and development environments. Fully automated with Infrastructure-as-Code, CI/CD pipelines, and comprehensive monitoring. Hosts distributed LLM training and inference experiments, including multi-GPU fine-tuning jobs and local model serving endpoints.

Technical Skills

 $\label{eq:AlML:LLMs} \begin{tabular}{ll} Al/ML: LLMs \cdot Distributed Training \cdot Deep Learning \cdot Transformer Architectures \cdot Vector Symbolic Architectures \cdot Model Optimization \cdot Time Series Forecasting \cdot Computer Vision \cdot Bayesian Methods \\ \end{tabular}$

 $\label{eq:continuous} \begin{array}{l} \textbf{Development:} \ \text{Python} \cdot \text{PyTorch} \cdot \text{Jax} \cdot \text{DevOps} \cdot \\ \text{Kubernetes} \cdot \text{Distributed Systems} \cdot \text{Docker} \cdot \text{PySpark} \cdot \text{SQL} \cdot \\ \text{Embedded Systems} \cdot \text{Go} \cdot \text{C} \cdot \text{React} \cdot \text{Syelte} \end{array}$

Industry Internships

Summer 2021 Research Intern | ARM Research, Austin

Developed transformer models for predicting malicious code using hardware performance counters.

Assisted in developing methods for identifying models polluted by data poisoning attacks, using Vector Symbolic Architectures.

Secured a Patent for detecting unknown anomalies in Time Series Forecasting applications.

Summer 2018 Mobile Sensing Intern | Huawei Research, Santa Clara

Designed Fast Machine Learning algorithms for inertial activity recognition using smartphone sensors.

Provided optimized implementation for real-time activity recognition on smartphones.

Implementation was integrated into Huawei smartphones for production deployment.

Scholastic Achievements

2022	Best Demo Award SenSys	2016	Google Research Pilot Award
2017	Best Paper Runner Up BuildSys	2016	Best Dev Tool Award HackRU
2017	Best Poster Award BuildSys	2014	Best Poster Award MIT IoT
2017	Best use of AWS HackRU	2014	Winner MIT IoT Hackathon
2016	Best Demo Runner Up SenSys		

Publications

2025 Federated Hyperdimensional Computing: Comprehensive Analysis and Robust Communication.

ACM Transactions on Internet of Things

Ye Tian, Rishikanth Chandrasekaran, Kazim Ergun, Xiaofan Yu, Tajana Rosing

2024 Multi-Model Inference Composition of Hyperdimensional Computing Ensembles.

IEEE 42nd International Conference on Computer Design (ICCD)

R Chandrasekaran; F Ponzina; V Wang; S Minowada; S Sharma; T Rosing.

2023 Federated Hyperdimensional Computing.

ACM Transactions on Internet of Things (Under Review)

Preprint: 10.48550/arXiv.2312.15966. K Ergun; R Chandrasekaran; T Rosing.

2023 Multi-Label Classification with Hyperdimensional Representations.

IEEE Access Journal

DOI: 10.1109/ACCESS.2023.3299881.

R Chandrasekaran; F Asgareinjad; J Morris; T Rosing.

2022 Fhdnn: Communication Efficient and Robust Federated Learning for AloT networks.

Proceedings of the 59th ACM/IEEE Design Automation Conference

DOI: 10.1145/3489517.3530394.

R Chandrasekaran; K Ergun; J Lee; D Nanjunda, J Kang, T Rosing.

2022 Hdnn-pim: Efficient in memory design of hyperdimensional computing with feature extraction.

Proceedings of the Great Lakes Symposium on VLSI

DOI: 10.1145/3526241.3530331.

A Dutta, S Gupta, B Khaleghi, R Chandrasekaran, W Xu, T Rosing.

2021 A drone-based system for intelligent and autonomous homes.

Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems

DOI: 10.1145/3485730.3492881.

S Xia, R Chandrasekaran, Y Liu, C Yang, TS Rosing, X Jiang

2019 Efficient Sparse Processing for Smart Home Applications.

Proceedings of the 17th ACM Conference on Embedded Networked Sensor Systems

DOI: 10.1145/3362743.3362963.

R Chandrasekaran, Y Guo, A Thomas, M Menarini, M Ostertag, T Rosing

2018 A Scalable System for Apportionment and Tracking of Energy Footprints in Commercial Buildings.

ACM Transaction on Sensor Networks (TSON)

DOI: 10.1145/3218582.

P Wei, X Chen, J Vega, S Xia, R Chandrasekaran, X Jiang

2018 PAWS: A Wearable Acoustic System for Pedestrian Safety.

IEEE/ACM Third International Conference on Internet-of-Things Design and Implementation (IoTDI)

DOI: 10.1109/IoTDI.2018.00031.

D de Godoy, B Islam, S Xia, MT Islam, R Chandrasekaran, YC Chen, S Nirjon, P Kinget, X Jiang

2017 ePrints a real-time and scalable system for fair apportionment and tracking of personal energy footprints in commercial buildings

ACM International Conference on Systems for Energy-Efficient Built Environments (BuildSys)

DOI: 10.1145/3137133.3137150

P Wei, X Chen, J Vega, S Xia, R Chandrasekaran, X Jiang

2016 Adaptive and Personalized Energy Saving Suggestions for Occupants in Smart Buildings

ACM International Conference on Systems for Energy-Efficient Built Environments (BuildSys)

DOI: 10.1145/2993422.2996412

P Wei, X Chen, R Chandrasekaran, F Song, X Jiang

2016 SEUS: A Wearable Multi-Channel Acoustic Headset Platform to Improve Pedestrian Safety

ACM Conference on Embedded Network Sensor Systems (SenSys)

DOI: 10.1145/2994551.2996547

R Chandrasekaran, D de Godoy, S Xia, MT Islam, B Islam, S Nirjon, P Kinget, X Jiang

2016 Personal energy footprint in shared building environment

International Conference on Information Processing in Sensor Networks (IPSN)

DOI: 10.1145/2993422.2996412

P Wei, X Chen, R Chandrasekaran, F Song, X Jiang

2014 Low-cost intelligent gesture recognition engine for audio-vocally impaired individuals

Global Humanitarian Technology Conference (GHTC)

DOI: 10.1109/GHTC.2014.6970349

C Rishikanth, H Sekar, G Rajagopal, R Rajesh, V Vijayaraghavan

Teaching

CSE 255

Data Mining and Analytics

CSE 151

Intro to A.I. Stats Approach

CSE 150A

Al: Probabilistic Models

CSE 152A

Intro to Computer Vision

CSE 101 Design and Analysis of Algorithm

W4701 Artificial Intelligence

E4764 Intelligent and Connected Systems